
  

  

Abstract— Endoscopic image diagnosis assisted by machine 
learning is useful for reducing misdetection and interobserver 
variability. Although many results have been reported, few 
effective methods are available to automatically detect early 
gastric cancer. Early gastric cancer have poor morphological 
features, which implies that automatic detection methods can be 
extremely difficult to construct.  

In this study, we proposed a convolutional neural 
network-based automatic detection scheme to assist the 
diagnosis of early gastric cancer in endoscopic images. We 
performed transfer learning using two classes (cancer and 
normal) of image datasets that have detailed texture 
information on lesions derived from a small number of 
annotated images. The accuracy of our trained network was 
87.6%, and the sensitivity and specificity were well balanced, 
which is important for future practical use. We also succeeded 
in presenting a candidate region of early gastric cancer as a heat 
map of unknown images. The detection accuracy was 82.8%. 
This means that our proposed scheme may offer substantial 
assistance to endoscopists in decision making. 

I. INTRODUCTION 

Gastric cancer accounts for one of the highest morbidity 
rates among all kinds of cancers. Nevertheless, people with 
early gastric cancer rarely feel any symptoms. Even when the 
salient symptoms appear as the cancer progresses, they are 
similar to those of gastritis and gastric ulcers; thus, it is 
difficult for patients to realize that they are already in the 
advanced stages of gastric cancer. Therefore, the early 
detection of gastric cancer using endoscopic images is 
required. However, image diagnosis of early gastric cancer is 
difficult even for gastroenterologists, and the diagnosis 
accuracy depends on the experience of the gastroenterologist.  

Recently, for the purpose of image diagnosis assistance 
based on machine learning techniques, many studies on 
automatic polyp detection by endoscopy have been published 
[1]. However, to the best of our knowledge, the technique for 
early gastric cancer detection has not been established for 
practical use, which can be attributed to two reasons. First, the 
data related to early gastric cancer that can be applied to 
machine learning have not been maintained sufficiently. 
Second, many early gastric cancers have poorer 
morphological features than those of progressive gastric 
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cancers, which renders automatic detection very difficult. The 
morphological features of early gastric cancer are primarily 
classified into the following three types: superficial elevated 
type (type 0-IIa), superficial depressed type (type 0-IIc), and 
protruding type (type 0-I). Fig. 1 shows the sample endoscopic 
images of each type. The red rectangles indicate each gastric 
cancer. Even for gastroenterologists, detecting lesions of types 
0-IIa and 0-IIc is occasionally difficult because of their poor 
morphological changes. Therefore, the diagnosis of early 
gastric cancer relies on identifying the slight changes in 
mucosal color and the irregular texture patterns of the 
underlying submucosa vessels.  

A remarkable method for observing this texture pattern is 
the image enhanced endoscopy (IEE) such as narrow-band 
imaging (NBI) and blue-laser imaging (BLI), which are highly 
effective under the use of magnification in producing a 
definite diagnosis of gastrointestinal cancer compared with the 
conventional white-light imaging (WLI) endoscopy [2]. 
Several studies have reported the usefulness of IEE for 
detecting gastrointestinal neoplasm. NBI with magnifying 
endoscopy is useful for detecting esophageal and pharyngeal 
cancers [3]; recently, BLI is reported to be useful for detecting 
colon neoplasm [4]. However, the efficacy of IEE for 
detecting gastric cancer has not been reported because of its 
low brightness. Moreover, the morphological changes in 
gastric cancer are difficult to detect by the background 
mucosal change in gastritis; hence, an automatic detection 
technique for early gastric cancer using WLI endoscopy is 
strongly required. 

In this study, we focus on the computer-aided diagnosis of 
early gastric cancer that can assist gastroenterologists in 
decision making. Prior to this work, we acquired 
approximately 1,000 images of early gastric cancer, especially 
those of types 0-I, 0-IIa, and 0-IIc captured by WLI, and more 
than 200 of these images had been provided with the ground 
truth indicating regions of lesions. The remaining images were 
certified as “normal” by a gastroenterologist. All the lesions 
were certified to be early gastric cancer based on the 
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retroactive observation after an endoscopic submucosal 
dissection (ESD) [5]. 

We herein present our preliminary work on the automatic 
detection of early gastric cancer based on a convolutional 
neural network (CNN) [6]. The major contributions of this 
work are as follows: 1) successful automatic detection of early 
gastric cancer with poor morphological features, which are 
occasionally difficult to detect even by endoscopists; 2) 
construction of our CNN-based detection scheme on a small 
number of image datasets; and 3) provide readers with some 
examples of misdetected early gastric cancer. The 
characteristics of misdetected images could be useful for 
researchers to construct more powerful methodologies of early 
gastric cancer detection for practical use.  

The remainder of the paper is organized as follows: In 
section 2, some related works are described. Our proposed 
scheme and methods are described in section 3. The 
experimental results and discussion are presented in section 4. 

II. RELATED WORK 

The research on automatic cancer detection for 
endoscopic diagnosis has primarily focused on colonoscopic 
polyp detection (e.g., [7]). Many have utilized the 
morphological features of polyps, such as the edge shape. A 
study has reported the construction of an appearance model of 
polyps, for which region segmentation was performed based 
on the degree of matching with the model [8]. Shortly 
thereafter, most methods focused on the strategy to combine 
feature extraction and its classifiers. Dramatic changes in 
detection accuracy, however, have been occurring since the 
upsurge in the utility of the CNN (e.g. [9]). The CNN 
automatically extracts, learns, and classifies features directly 
from the input datasets. However, it is well known that 
CNN-based methods require the preparation of a large 
number of annotated datasets. Therefore, this is a significant 
challenge to overcome especially for medical images. Hence, 
some studies utilized transfer learning, which is a technique 
that utilizes a pre-trained network using any other large 
number of learning datasets. Transfer learning has a higher 
accuracy than a network fully trained from scratch, especially 
for medical images [10]. Recently, the Single Shot MultiBox 
Detector [11], a state-of-the-art method for object detection, 
was applied to detect various kinds of gastric cancers with 
92.2 % sensitivity and a positive predictive value (PPV) of 
30.6 % [12]. The reasons for the low PPV compared to the 
high sensitivity might be that early gastric cancer has few 
morphological features and is similar to gastritis. To mitigate 
these problems, we propose a transferring CNN model that is 
fine-tuned via the detailed texture information of two kinds of 
images: cancer and normal. The proposed model achieved 
well-balanced accuracy in terms of sensitivity and specificity, 
and was able to reveal the approximate locations of early 
gastric cancers.  

III. OUR APPROACH 

Our proposed scheme is divided into four segments: 
preparation of training datasets, transfer learning for the CNN, 
prediction of lesion presence, and visualization of cancer 
likelihood as a heat map (Fig. 2). All the segments and their 
related methods are explained in the following subsections.  

A. Preparation of training datasets 

Our image datasets were originally obtained from an 
endoscopic video under white light (GIF-H290Z or GIF TYPE 
H260Z, Olympus Optical, Tokyo, Japan) and a standard video 
endoscopy system (EVIS LUCERA ELITE, Olympus 
Optical). In this work, we used the 24-bit full-color images of 
size 1000 × 870 pixels extracted from the video frames. The 
images, including the lesions, were confirmed as cancer 
images only for early gastric cancer, which were obtained by 
tracing these back to 58 patients who had been treated with 
ESD. A total of 926 images were collected, of which 228 
images included more than one lesion in early gastric cancer. 
The remaining were noncancerous images (that is, normal 
images). All the lesions in the cancer images were identified 
manually by a gastroenterologist. The identified lesions were 
translated into binary images and used as the ground truth, as 
shown in Fig. 2. 

As early gastric cancers have few morphological features, 
the detailed texture delivers valuable information for the 
training. To obtain their information, we cropped 
approximately 100 images of size 224 × 224 pixels randomly 
from each of the 100 cancer images that were selected from 
the 228 cancer images. Each cropped image included over 
80% cancerous regions, according to the corresponding 
ground truth. Subsequently, we were able to obtain 9,587 
cancer images for the training datasets. Conversely, 9,800 
normal images of size 224 × 224 pixels, which did not include 
cancerous regions, were randomly cropped from the entire 
normal and cancer images as the training datasets. For the test 
datasets, 4,653 cancer images and 4,997 normal images were 
obtained from the unused cancer and normal images similarly. 

For training a CNN, a large number of training datasets are 
required for reliable learning. Acquiring the annotated training 
datasets, however, is highly expensive, especially from 
medical images. As an alternative, data augmentation is 
generally used to increase the number of training datasets via a 
geometric or appearance transformation. Keras [13], an 
open-source neural network library written in Python, was 
used for data augmentation. Using nine kinds of 
augmentations, including rotation, shift, shear, zoom, and flip, 
which were applied twice, we obtained 172,555 cancer images 
and 176,388 normal images of size 224 × 224 pixels. 
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Figure 2 Our proposed prediction scheme for early gastric cancer detection 
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B. Transfer learning and validation 

Transfer learning is a powerful tool for tuning the CNN 
parameters, and is commonly used to avoid full tuning from 
scratch [14]. Transfer learning requires two domains of 
annotated datasets: source domain and target domain. The 
source domain typically has a large number of annotated 
datasets and is used for training a CNN from scratch, which is 
called a pre-trained network. To satisfy the present task, a 
target domain was used for fine-tuning the parameters of the 
pre-trained network. GoogLeNet [15], consisting of 22 
convolutional layers, was adopted in this study as the 
pre-trained network, which was trained on the datasets of 
ImageNet large scale visual recognition challenge [16]. As 
the target domain, the training datasets mentioned in the 
previous subsection were used for constructing a fine-tuned 
network to predict the occurrence of cancer from an image. 

For the fine-tuning, we trained the initial network for 50 
epochs with learning rates of 0.0001 and 0.00001 before and 
after 34 epochs, respectively. The network parameters were 
optimized using stochastic gradient descent with a mini-batch 
size of 32. As mentioned in the previous subsection, we used 
172,555 and 176,388 cancer and normal images, respectively, 
for the fine-tuning. We then applied the new network to test 
the datasets mentioned earlier, i.e., 4,653 and 4,997 images, 
and evaluated them using three metrics: sensitivity, 
specificity, and accuracy (shown in Table 1). Furthermore, 
the result shows the correct detection with a high PPV of 
93.4%. Both the training and the test were performed on the 
NVIDIA deep learning GPU training system (DIGITS, 
Version 5). The training time was approximately 10 h on the 
Intel Xeon (2.4 GHz, 128GB memory), and the NVIDIA 
GeForce GTX1080 (8GB × 2 memory). Additionally, we 
examined the ROC curve to measure the performance of both 
networks with and without data augmentation. As shown in 
Fig. 3, the network with data augmentation had a higher 
performance ability in this prediction.  

TABLE I. Evaluation results of the trained network 
Prediction 

Positive Negative 

Ground 
truth 

Positive 
(cancer) 

True positive (TP) False negative (FN) Sensitivity
3,723   930  80.0%  

Negative 
(normal) 

False positive (FP) Ture negative (TN) Specificity
262   4,735  94.8%  

Accuracy
87.6%  

 

 
Figure 3 ROC curve of the fine-tuned network 

C. Detecting lesions on sliding window 

Using the fine-tuned network, an automatic detection of 
early gastric cancer was performed on a total of 926 
endoscopic images of size 1000 × 870 pixels. The detection 
procedure is as follows: Based on a sliding window, from the 
top left to the bottom right, each image was divided into block 
images of 10 horizontal images by 9 vertical images, where 
the size of each is 224 × 224 pixels. The neighboring blocks 
partly overlapped. Each block image was applied to the 
network, and then the likelihood of early gastric cancer, 
which means the existence probability, was assigned. The 
output was translated into a pseudo color whose density 
indicates the difference in the likelihood, and was 
superimposed on the input image. After these procedures, we 
were able to obtain the heat map, which assists endoscopists 
with the useful information for image diagnosis.  

IV. RESULTS AND DISCUSSION 

Some examples of our detection results of early gastric 
cancer are shown in Fig. 4. Given the three types of cancers in 
our datasets, the results are shown according to each type. 
The manually identified regions are marked by green, and 
blue indicates the potentially cancerous regions by our 
prediction. The target size can range from approximately 50 
squared pixels to approximately 900 squared pixels. 
Especially in the case of types 0-IIa and 0-IIc, few salient 
features occurred in their shapes. Nevertheless, our proposed 
scheme accomplished the accurate detection in the various 
images across the three types of early gastric cancer. 

We examined the detection accuracy by counting the 
number of images when at least one block matches the ground 
truth of the images with the existing cancer. Consequently, 
the detection success was accomplished in a total of 205 
images (89.9%) out of 228 cancer images. The accuracy, 
when excluding the images used for learning, was 82.8%. 
Conversely, a total of 491 images (70.3%) out of 698 normal 
images were correctly predicted as “normal.” When 
considering the correspondence of each block, 15,102 blocks 
out of 20,520 blocks (73.6%) were correctly predicted in the 
cancer images, and 62,096 blocks out of 62,820 blocks 
(98.8%) were correctly predicted in the normal images.  The 
processing time was 4 ms per image, except for the time 
required to input/output the image.  

Fig. 5 shows the representative examples of the 
misprediction. Figs. 5a and 5b show the over-detection (false 
positive) and the misdetection (false negative) in the cancer 
images, respectively. Conversely, Figs. 5c and 5d show the 
over-detection in the normal images. The over-detected 
regions were not confirmed as truly normal because target 
biopsies had not been conducted from the regions; however, 
the prescreening for other gastric cancers before the treatment 
of ESD for the primary region has been conducted, and 
additionally a retrospective check by experienced 
gastroenterologist for the obtained datasets confirmed them to 
be noncancerous regions. As shown in the enlarged images of 
Figs. 5b and 5d, the over-detected regions have obvious 
irregular texture patterns on their surface, which might have 
negatively affected the prediction. Moreover, misdetection 
may occur when the target regions are out of focus or are 
located in deeper areas. To improve the detection accuracy, it 
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might be useful to deliberately add such poor-quality data in 
the ground truth. 

In summary, we demonstrated that our preliminary 
CNN-based prediction scheme achieved high accuracy in 
early gastric cancer detection using a small number of 
learning datasets. A particularly striking result is that our 
prediction scheme had a well-balanced accuracy for both 
cancer and normal images. In the future, we believe that it is 
possible to improve our prediction results by adding images 
with surface features similar to that of gastritis to the training 
datasets. 
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